Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 18 de 18
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.10.30.23297466

Résumé

The SARS-CoV-2 XBB is a group of highly immune-evasive lineages of the Omicron VOC that emerged by recombining BA.2-descendent lineages and spread worldwide during 2023. In this study, we combine SARS-CoV-2 genomic data (n = 11,065 sequences) with epidemiological data of Severe Acute Respiratory Infection (SARI) cases collected in Brazil between October 2022 and July 2023 to reconstruct the space-time dynamics and epidemiologic impact of XBB dissemination in the country. Our analyses revealed that the introduction and local emergence of lineages carrying convergent mutations within the Spike protein, especially F486P, F456L, and L455F, propelled the spread of XBB* lineages in Brazil. The average relative instantaneous reproduction numbers of XBB*+F486P, XBB*+F486P+F456L, and XBB*+F486P+ F456L+L455F lineages in Brazil were estimated to be 1.24, 1.33, and 1.48 higher than that of other co-circulating lineages (mainly BQ.1*/BE*), respectively. Despite such a growth advantage, the dissemination of these XBB* lineages had a reduced impact on Brazils epidemiological scenario concerning previous Omicron subvariants. The peak number of SARI cases from SARS-CoV-2 during the XBB wave was approximately 90%, 80%, and 70% lower than that observed during the previous BA.1*, BA.5*, and BQ.1* waves, respectively. These findings revealed the emergence of multiple XBB lineages with progressively increasing growth advantage, yet with relatively limited epidemiological impact in Brazil throughout 2023. The XBB*+F486P+F456L+L455F lineages stand out for their heightened transmissibility, warranting close monitoring in the months ahead.

2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.01.25.23284831

Résumé

In recent years, the SARS-CoV-2 viruses emerged and spread around the world, leaving a large death toll and long-lasting impact on survivors. As of January 2023, Brazil is still among the countries with the highest number of registered deaths. This continental-size and pluralistic country experienced a heterogenous implementation of non-pharmacological and pharmacological interventions which, associated with large socioeconomic differences between the country regions, has led to distinct virus spread dynamics across the country. Here we investigate the spatiotemporal dispersion of emerging SARS-CoV-2 lineages and its dynamics in distinct epidemiological scenarios in the first two years of the pandemics in the Pernambuco state (Northeast Brazil). We generated a total of 1389 new SARS-CoV-2 genomes from June 2020 to August 2021 covering all major regions of the state. This sampling captured the arrival, communitary transmission and the circulation of the B1.1, B.1.1.28 and B.1.1.33 lineages in the first eight months of the pandemics, the emergence of the former variant of interest P.2 and the emergence and fast replacement of all previous variants by the more transmissible variant of concern P.1 (Gamma) lineage. Based on the incidence and lineage spread pattern we observed that there was an East-to-West to inner state pattern of transmission which is in agreement with the transmission of more populous metropolitan areas to medium and small size country-side cities in the state. Such transmission patterns may be partially explained by the main routes of traffic across municipalities in the state. Nevertheless, inter-state traffic was also another important source of lineage introduction and spread into the state. Our results highlight that the fine grained intrastate analysis of lineages and incidence spread can provide actionable insights for planning future non-pharmacological intervention for air-borne transmissible human pathogens.

3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.09.21.22280193

Résumé

ABSTRACT The SARS-CoV-2 variants of concern (VOCs) Delta and Omicron spread globally during mid and late 2021, respectively, with variable impact according to the immune population landscape. In this study, we compare the dissemination dynamics of these VOCs in the Amazonas state, one of Brazil’s most heavily affected regions. We sequenced the virus genome from 4,128 patients collected in Amazonas between July 1st, 2021 and January 31st, 2022 and investigated the lineage replacement dynamics using a phylodynamic approach. The VOCs Delta and Omicron displayed similar patterns of phylogeographic spread but significantly different epidemic dynamics. The Delta and Omicron epidemics were fueled by multiple introduction events, followed by the successful establishment of a few local transmission lineages of considerable size that mainly arose in the Capital, Manaus. The VOC Omicron spread and became dominant much faster than the VOC Delta. We estimate that under the same epidemiological conditions, the average Re of Omicron was ∼3.3 times higher than that of Delta and the average Re of the Delta was ∼1.3 times higher than that of Gamma. Furthermore, the gradual replacement of Gamma by Delta occurred without an upsurge of COVID-19 cases, while the rise of Omicron fueled a sharp increase in SARS-CoV-2 infection. The Omicron wave displayed a shorter duration and a clear decoupling between the number of SARS-CoV-2 cases and deaths compared with previous (B.1.* and Gamma) waves in the Amazonas state. These findings suggest that the high level of hybrid immunity (infection plus vaccination) acquired by the Amazonian population by mid-2021 was able to limit the spread of the VOC Delta and was also probably crucial to curb the number of severe cases, although not the number of VOC Omicron new infections.


Sujets)
COVID-19
4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.29.21266109

Résumé

The rapid spread of the SARS-CoV-2 Variant of Concern (VOC) Gamma during late 2020 and early 2021 in Brazilian settings with high seroprevalence raised some concern about the potential role of reinfections in driving the epidemic. Very few cases of reinfection associated with the VOC Gamma, however, have been reported. Here we describe 25 cases of SARS-CoV-2 reinfection confirmed by real-time RT-PCR twice within months apart in Brazil. SARS-CoV-2 genomic analysis confirmed that individuals were primo-infected between March and December 2020 with distinct viral lineages, including B.1.1, B.1.1.28, B.1.1.33, B.1.195 and P.2, and then reinfected with the VOC Gamma between 3 to 12 months after primo-infection. The overall mean cycle threshold (Ct) value of the first (25.7) and second (24.5) episodes were roughly similar for the whole group and 14 individuals displayed mean Ct values < 25.0 at reinfection. Sera of 14 patients tested by plaque reduction neutralization test after reinfection displayed detectable neutralizing antibodies against Gamma and other SARS-CoV-2 variants (B.1.33, B.1.1.28 and Delta). All individuals have milder or no symptoms after reinfection and none required hospitalization. The present study demonstrates that the VOC Gamma was associated with reinfections during the second Brazilian epidemic wave in 2021 and raised concern about the potential infectiousness of reinfected subjects. Although individuals here analyzed failed to mount a long-term sterilizing immunity, they developed a high anti-Gamma neutralizing antibody response after reinfection that may provide some protection against severe disease.

5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.25.21266251

Résumé

The SARS-CoV-2 Variant of Concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the Southern region, followed by more cases in different country regions during the following months. By early September 2021, Delta was already the dominant variant in the Southeastern (87%), Southern (73%), and Northeastern (52%) Brazilian regions. This work aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of Maximum Likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 of VOC Delta complete genomes (482 from this study) recovered across 21 out of 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the Southeastern, Northeastern, Northern, and Central-Western regions. The clade BR-II (n = 207) arose in the Parana state in late April 2021 and aggregated the largest fraction of sampled genomes from the Southern region. Lastly, the clade BR-III emerged in the Sao Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic.


Sujets)
COVID-19
6.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.10.24.21265116

Résumé

The COVID-19 epidemic in Brazil experienced two major country-wide lineage replacements, the first driven by the lineage P.2, formerly classified as variant of interest (VOI) Zeta in late 2020 and the second by the variant of concern (VOC) Gamma in early 2021. To better understand how these SARS-CoV-2 lineage turnovers occurred in Brazil, we analyzed 11,724 high-quality SARS-CoV-2 whole genomes of samples collected in different country regions between September 2020 and April 2021. Our findings indicate that the spatial dispersion of both variants in Brazil was driven by short and long-distance viral transmission. The lineage P.2 harboring Spike mutation E484K probably emerged around late July 2020 in the Rio de Janeiro (RJ) state, which contributed with most (~50%) inter-state viral disseminations, and only became locally established in most Brazilian states by October 2020. The VOC Gamma probably arose in November 2020 in the Amazonas (AM) state, which was responsible for 60-70% of the inter-state viral dissemination, and the earliest timing of community transmission of this VOC in many Brazilian states was already traced to December 2020. We estimate that variant Gamma was 1.56-3.06 more transmissible than variant P.2 co-circulating in RJ and that the median effective reproductive number (Re) of Gamma in RJ and SP states (Re = 1.59-1.91) was lower than in AM (Re = 3.55). In summary, although the epicenter of the lineage P.2 dissemination in Brazil was the heavily interconnected Southeastern region, it displayed a slower rate of spatial spread than the VOC Gamma originated in the more isolated Northern Brazilian region. Our findings also support that the VOC Gamma was more transmissible than lineage P.2, although the viral Re of the VOC varied according to the geographic context.


Sujets)
COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.18.21263755

Résumé

The SARS-CoV-2 has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well characterized but two main factors have precluded major coinfection/codetection analysis thus far: i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic which limited the identification of lineage defining mutations necessary to distinguish coinfecting viral lineages; and the ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we have put together a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. It enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming their plausibility with the co-circulating lineages at the timeframe investigated. These coinfections represent around 0.61% of all samples investigated. Although our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, it is likely an underestimation and coinfection rates warrants further investigation. DATA SUMMARYThe raw fastq data of codetection cases are deposited on gisaid.org and correlated to gisaid codes: EPI_ISL_1068258, EPI_ISL_2491769, EPI_ISL_2491781, EPI_ISL_2645599, EPI_ISL_2661789, EPI_ISL_2661931, EPI_ISL_2677092, EPI_ISL_2777552, EPI_ISL_3869215. Supplementary data are available on https://doi.org/10.6084/m9.figshare.16570602.v1. The workflow code used in this study is publicly available on: https://github.com/dezordi/IAM_SARSCOV2.


Sujets)
Co-infection
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.12.21263453

Résumé

Summary The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated as Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly Δ 144 or Δ 141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we found no overrepresentation of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sub-lineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting new variants with higher infectivity are expected to increase.


Sujets)
COVID-19
9.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.14.21260508

Résumé

We report a genomic surveillance of SARS-CoV-2 lineages circulating in Parana, Southern Brazil, from March 2020 to April 2021. Our analysis, based on 333 genomes, revealed that the first variants detected in the state of Parana in March 2020 were the B.1.1.33 and B.1.1.28 variants. The variants B.1.1.28 and B.1.1.33 were predominant throughout 2020 until the introduction of the variant P.2 in August 2020 and a variant of concern (VOC), P.1, in January 2021. Phylogenetic analyses of the SARS-CoV-2 genomes that were previously classified as the VOC P.1 lineage by PANGO showed that some genomes from February to April 2021 branched in a monophyletic clade and that these samples grouped together with genomes recently described with the lineage P.1-like-II. An extended phylogenetic analysis, including SARS-CoV-2 genomes from all over Brazil, showed that the P.1-like-II lineage appears at a high frequency in the southern region of the country. The P.1-like-II lineage genomes share some, but not all, defining mutations of the VOC P.1. For instance, it has the previously described ORF1a:D2980H and N:P383 L unique mutations and the newly detected ORF1a:P1213 L and ORF1b:K2340N mutations. Additionally, a new mutation (E661D) in the spike (S) protein has been identified in nearly 10\% of the genomes classified as the VOC P.1 from Parana in March and April 2021. We also report the identification of the S:W152C mutation in one genome from Parana, classified as the N.10 variant. Finally, we analyzed the correlation between the lineage and the P.1 variant frequency, age group (patients younger or older than 60 years old) and the clinical data of 86 cases from the state of Parana. This analysis does not support an association between the P.1 variant prevalence and COVID-19 severity or age strata. Our results provided a reliable picture of the evolution of the SARS-CoV-2 pandemic in the state of Parana characterized by the dominance of the P.1 strain, as well as a high frequencies of the P.1-like-II lineage and the S:E661D mutations. Epidemiological and genomic surveillance efforts should be continued to unveil the biological relevance of the novel mutations detected in the VOC P.1 in Parana.


Sujets)
COVID-19
10.
ssrn; 2021.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3876334

Résumé

Buss et al. (2021) and Faria et al. (2021) reported that ~76% of the residents of the capital city of Manaus, had been infected by SARS-CoV-2 by October 2020 suggesting that herd immunity had been achieved by the end of the first wave. But the announcement of herd immunity, which would imply reasonable protection from future outbreaks, only provided the Manaus population with a false sense of security. Within two months later, a second wave of COVID-19 was initiated with death rates much larger than the first attributed to the appearance of the new P.1 Variant of Concern. Faria et al. (2021) suggest that large scale reinfections played an important role in enabling the huge second epidemic wave. In this Technical Comment we challenge such interpretations, and provide quantitative arguments that suggest the attack rate of the first wave was well below 76%. We then present alternative interpretations of the data.


Sujets)
COVID-19
11.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-580195.v1

Résumé

One of the most remarkable features of the SARS-CoV-2 Variants of Concern (VOC) is the unusually large number of mutations they carry. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we described a new SARS-CoV-2 lineage provisionally designated as P.1-like-II that, as well as the previously described lineage P.1-like-I, shares several lineage-defining mutations with the VOC P.1 circulating in Brazil. Reconstructions of P.1 ancestor sequences demonstrate that the entire constellation of mutations that define the VOC P.1 did not accumulate within a single long-term infected individual, but was acquired by sequential addition during interhost transmissions. Our evolutionary analyses further estimate that P.1-ancestors strains carrying half of the P.1-lineage-defining mutations, including those at the receptor-binding domain of the Spike protein, circulated cryptically in the Amazonas state since August 2020. This evolutionary pattern is consistent with the hypothesis that partial human population immunity acquired from natural SARS-CoV-2 infections during the first half of 2020 might have been the major driving force behind natural selection that allowed VOCs' emergence and worldwide spread. These findings also support a long lag-time between the emergence of variants with key mutations of concern and expansion of the VOC P.1 in Brazil.


Sujets)
COVID-19
12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.19.21253946

Résumé

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the SARS-CoV-2 Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil is generating new viral lineages that might be more resistant to neutralization than parental variants of concern.

13.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.03.12.434969

Résumé

The SARS-CoV-2 epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. Two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved within lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North and Northeast regions.

14.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-318392.v1

Résumé

The SARS-CoV-2 lineage B.1.1.28 has been evolving in Brazil since February 2020 giving origin to multiple local clades including the new Variant of Concern (VOC) designated P.1 or 501Y.V3. The recent emergence of sub-lineages with convergent mutations in the spike (S) protein raises concern about the potential impact on viral infectivity and immune escape. We describe here the first three confirmed SARS-CoV-2 reinfections cases with the new VOC P.1 in residents of the Amazonas state, Brazil. Three female patients, 29, 40, and 50-year-old, were RT-PCR confirmed for SARS-CoV-2 on two occasions, with at least 92 days apart. Next-generation sequencing and phylogenetic analysis were conducted to precisely access the SARS-CoV-2 lineages of each infection event. SARS-CoV-2 genomic analysis confirmed three cases of reinfections caused by the VOC P.1 in patients that were primo-infected by distinct viral lineages 3–9 months earlier. Case 1 (29-year-old) was positive on March 24, 2020 (lineage B.1.195) and then on December 30, 2020 (lineage P.1); case 2 (50-year-old) was positive on October 19, 2020 (lineage B.1.1.33) and on January 19, 2021 (lineage P.1); case 3 (40-year-old) was positive on April 22, 2020 (lineage B.1.195) and on January 29, 2021 (lineage P.1). The three patients displayed low mean Ct values (< 22) at nasopharyngeal samples and reported less severe illness during reinfection. The present study provides the first evidence of the new VOC P.1 causing multiple reinfections during the second epidemic peak in the Amazonas state. Our findings suggest that reinfected individuals may have been infectious. Although immune responses induced by natural infections do not necessarily prevent subsequent infections by the VOC P.1, they may still protect from severe disease.

15.
preprints.org; 2021.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-202101.0132.v2

Résumé

To date, uncertainty remains about how long the protective immune responses against SARS-CoV-2 persists and reports of suspected reinfection began to be described in recovered patients months after the first episode. Viral evolution may favor reinfections, and the recently described spike mutations, particularly in the receptor binding domain (RBD) in SARS-CoV-2 lineages circulating in the UK, South Africa, and most recently in Brazil, have raised concern on their potential impact in infectivity, immune escape and reinfection. We report a case of reinfection from distinct SARS-CoV-2 lineages presenting the E484K mutation in Brazil, a variant associated with escape from neutralizing antibodies.

16.
preprints.org; 2021.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202101.0132.v1

Résumé

To date, uncertainty remains about how long the protective immune responses against SARS-CoV-2 persists and the first reports of suspected reinfection began to be described in recovered patients months after the first episode. Viral evolution may favor reinfections, and the recently described spike mutations, particularly in the receptor binding domain (RBD) in SARS-CoV-2 lineages circulating in the UK, South Africa, and most recently in Brazil, have raised concern on their potential impact in infectivity and immune escape. We report the first case of reinfection from genetically distinct SARS-CoV-2 lineage presenting the E484K spike mutation in Brazil, a variant associated with escape from neutralizing antibodies.

17.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.06.17.158006

Résumé

Despite all efforts to control the COVID-19 spread, the SARS-CoV-2 reached South America within three months after its first detection in China, and Brazil became one of the hotspots of COVID-19 in the world. Several SARS-CoV-2 lineages have been identified and some local clusters have been described in this early pandemic phase in Western countries. Here we investigated the genetic diversity of SARS-CoV-2 during the early phase (late February to late April) of the epidemic in Brazil. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 in Brazil and the community transmission of a major B.1.1 lineage defined by two amino acid substitutions in the Nucleocapsid and ORF6. This SARS-CoV-2 Brazilian lineage was probably established during February 2020 and rapidly spread through the country, reaching different Brazilian regions by the middle of March 2020. Our study also supports occasional exportations of this Brazilian B.1.1 lineage to neighboring South American countries and to more distant countries before the implementation of international air travels restrictions in Brazil.


Sujets)
COVID-19
18.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.04.20.20073007

Résumé

The SARS-CoV-2 rapidly spread around the world during 2020, but the precise time in which the virus began to spread locally is currently unknown for most countries. Here, we estimate the probable onset date of the community spread of SARS-CoV-2 from the cumulative number of deaths reported during the early stage of the epidemic in Western Europe and the Americas. Our results support that SARS-CoV-2 probably started to spread locally in all western countries analyzed between the middle of January and early February 2020, thus long before community transmission was officially recognized and control measures were implemented.


Sujets)
Mort
SÉLECTION CITATIONS
Détails de la recherche